
AMR Godunov Unsplit Algorithm and

Implementation

P. Colella
D. T. Graves
T. J. Ligocki
D. F. Martin

B. Van Straalen 1

Applied Numerical Algorithms Group
Computational Research Division

Lawrence Berkeley National Laboratory
Berkeley, CA

January 25, 2008

1This work supported by the NASA Earth and Space Sciences Computational Technologies

Program and by the U.S. Department of Energy: Director, Office of Science, Office of Advanced

Scientific Computing Research under Contract DE-AC02-05CH11231.

Contents

1 Algorithm 2

1.1 Notation . 2
1.2 Multidimensional higher-order Godunov method 3

1.2.1 Outline . 3
1.2.2 Slope Calculation . 5

1.3 Artificial Viscosity . 7
1.4 Extension to PPM . 7
1.5 Recursive AMR Update . 8

2 Interface 10

2.1 Architecture Diagram . 10
2.2 Data Design . 10

2.2.1 Global Data Structures . 10
2.2.1.1 Chombo Container Classes 10
2.2.1.2 Time-dependent AMR 11

2.2.2 Internal Software Data Structures 11
2.3 Class Hierarchy . 12

2.3.1 Class AMRLevel<name> . 12
2.3.2 Class LevelGodunov . 14
2.3.3 Class PatchGodunov . 16
2.3.4 Class GodunovPhysics . 18
2.3.5 Class PhysIBC . 23

1

Chapter 1

Algorithm

This section describes the numerical method for integrating systems of conservation laws
(e.g., the Euler equations of gas dynamics) on an AMR grid hierarchy. This is done using
an unsplit, second-order Godunov method.

1.1 Notation

Most of the notation used here is introduced in the Chombo design document [3]. The
main exception to that is a notation using | symbols. For computations at cell centers
the notation

CC = A | B | C

means that the 3-point formula A is used for CC if all cell centered values it uses are
available, the 2-point formula B is used if current cell borders the high side of the physical
domain (i.e., no high side value), and the 2-point formula C is used if current cell borders
the low side of the physical domain (i.e., no low side value). For computations at face
centers the analogous notation

FC = A | B | C

means that the 2-point formula A is used for FC if all cell centered values it uses are
available, the 1-point formula B is used if current face coincides with the high side of the
physical domain (i.e., no high side value), and the 1-point formula C is used if current
face coincided with the low side of the physical domain (i.e., no low side value).

2

1.2 Multidimensional higher-order Godunov method

The methods developed here have their origins in Colella [5] and Saltzman [7]. We are
solving a hyperbolic system of equations of the form

∂U

∂t
+

D−1∑

d=0

∂F d

∂xd
= S (1.1)

We also assume there may be a change of variables W = W (U) (W ≡ “primitive
variables”) that can be applied to simplify the calculation of the characteristic structure
of the equations. This leads to a similar system of equations in W .

∂W

∂t
+

D−1∑

d=0

Ad(W)
∂W d

∂xd
= S ′ (1.2)

Ad = ∇UW · ∇UF
d · ∇WU

S ′ = ∇UW · S

Note, this system is not in conservation form as the primitive variables, in general, are
not conserved quantities.

Further note: The algorithm (and the software implementation) use the source term,
S and/or S ′, to compute accurate fluxes which are used to advance U in time due to
the hyperbolic portion of (1.1). U still needs to be updated to incorporate these source
terms. Specifically, solving:

∂U

∂t
= S

is left to the user. This may be solved directly/explicitly or using indirect/implicit methods
but it must be included in the overall algorithm.

1.2.1 Outline

Given Un
i
and Sn

i
, we want to compute a second-order accurate estimate of the fluxes:

F
n+ 1

2

i+ 1

2
ed

≈ F d(x0 + (i + 1
2
e
d)h, tn + 1

2
∆t). The transformations ∇UW and ∇WU are

functions of both space and time. We shall leave the precise centering of these transfor-
mations vague as this will be application dependent. In outline, the method is given as
follows.

1. Transform to primitive variables, and compute slopes (the definition of ∆dWi is
given in section 1.2.2):

Given W n
i
= W (Un

i
), compute ∆dWi, for 0 ≤ d < D

3

2. Compute the effect of the normal derivative terms and the source term on the
extrapolation in space and time from cell centers to faces. For 0 ≤ d < D,

Wi,±,d = W n
i
+

1

2
(±I −

∆t

h
Ad

i
)P±(∆

dWi) (1.3)

Ad
i
= Ad(Wi)

P±(W) =
∑

±λk>0

(lk ·W)rk

Wi,±,d = Wi,±,d +
∆t

2
∇UW · Sn

i
(1.4)

where λk are eigenvalues of Ad
i
, and lk and rk are the corresponding left and right

eigenvectors.

3. Compute estimates of F d suitable for computing 1D flux derivatives ∂F d

∂xd using a
Riemann solver for the interior, R, and for the boundary, RB. Here, and in what
follows, ∇UW need only be first-order accurate, e.g., differ from the value at Un

i

by O(h).

F 1D

i+ 1

2
ed

= R(Wi,+,d,Wi+ed,−,d, d)

| RB(Wi,+,d, (i+
1

2
e
d)h, d)

| RB(Wi+ed,−,d, (i+
1

2
e
d)h, d)

(1.5)

4. In 3D compute corrections to Wi,±,d corresponding to one set of transverse deriva-
tives appropriate to obtain (1, 1, 1) diagonal coupling. In 2D skip this step.

Wi,±,d1,d2 = Wi,±,d1 −
∆t

3h
∇UW · (F 1D

i+ 1

2
ed2

− F 1D

i− 1

2
ed2

) (1.6)

5. In 3D compute fluxes corresponding to corrections made in the previous step. In
2D skip this step.

F
i+ 1

2
ed1 ,d2

= R(Wi,+,d1,d2 ,Wi+ed1 ,−,d1,d2
, d1)

| RB(Wi,+,d1,d2 , (i+
1

2
e
d1)h, d1)

| RB(Wi+ed1 ,−,d1,d2
, (i+

1

2
e
d1)h, d1)

(1.7)

d1 6= d2, 0 ≤ d1, d2 < D

4

6. Compute final corrections to Wi,±,d due to the final transverse derivatives.

2D: W
n+ 1

2

i,±,d = Wi,±,d −
∆t

2h
∇UW · (F 1D

i+ 1

2
ed1

− F 1D

i− 1

2
ed1

) (1.8)

d 6= d1, 0 ≤ d, d1 < D

3D: W
n+ 1

2

i,±,d = Wi,±,d −
∆t

2h
∇UW · (F

i+ 1

2
ed1 ,d2

− F
i− 1

2
ed1 ,d2

) (1.9)

−
∆t

2h
∇UW · (F

i+ 1

2
ed2 ,d1

− F
i− 1

2
ed2 ,d1

)

d 6= d1 6= d2, 0 ≤ d, d1, d2 < D

7. Compute final estimate of fluxes.

F
n+ 1

2

i+ 1

2
ed

= R(W
n+ 1

2

i,+,d,W
n+ 1

2

i+ed,−,d
, d)

| RB(W
n+ 1

2

i,+,d, (i+
1

2
e
d)h, d)

| RB(W
n+ 1

2

i+ed,−,d
, (i+

1

2
e
d)h, d)

(1.10)

8. Update the solution using the divergence of the fluxes.

Un+1
i

= Un
i
−

∆t

h

D−1∑

d=0

(F
n+ 1

2

i+ 1

2
ed

− F
n+ 1

2

i− 1

2
ed
) (1.11)

1.2.2 Slope Calculation

We will use the 4th order slope calculation in Colella and Glaz [2] combined with charac-
teristic limiting.

∆dWi = ζi δ
vL(∆d

4Wi,∆
d
−Wi,∆

d
+Wi) | ∆

d
2Wi | ∆

d
2Wi

∆d
4Wi =

2

3
((W −

1

4
∆d

2W)i+ed − (W +
1

4
∆d

2W)i−ed)

∆d
2Wi = δvL(∆̃d

2Wi,∆
d
−Wi,∆

d
+Wi) | ∆

d
−Wi | ∆

d
+Wi

∆̃d
2Wi =

1

2
(W n

i+ed
−W n

i−ed
)

∆d
−Wi = W n

i
−W n

i−ed
, ∆d

+Wi = W n
i+ed

−W n
i

At domain boundaries, ∆d
−Wi and ∆

d
+Wi may be overwritten by the application to provide

application dependent slopes at the boundaries (see section 2.3.5). There are two versions
of the van Leer limiter δvL(δWC , δWL, δWR) that are commonly used. One is to apply a
limiter to the differences in characteristic variables.

5

1. Compute expansion of one-sided and centered differences in characteristic variables.

αk
C = lk · δWC

αk
L = lk · δWL

αk
R = lk · δWR

2. Apply van Leer limiter

αk =

{
min{|αk

C |, 2|αk
L |, 2|α

k
R |} if αk

L · αk
R > 0;

0 otherwise.

3. δvL =
∑

k α
krk

Here, lk = lk(W n
i
) and rk = rk(W n

i
).

For a variety of problems, it suffices to apply the van Leer limiter component-wise
to the differences. Formally, this can be obtained from the more general case above by
taking the matrices of left and right eigenvectors to be the identity.

Finally, we give the algorithm for computing the flattening coefficient ζi. We assume
that there is a quantity corresponding to the pressure in gas dynamics (denoted here
as p) which can act as a steepness indicator, and a quantity corresponding to the bulk
modulus (denoted here asK, given as γp in a gas), that can be used to non-dimensionalize
differences in p.

ζi =

{
min

0≤d<D

ζd
i

if
∑

D−1

d=0 ∆d
1u

d
i
< 0

1 otherwise
(1.12)

ζd
i
= min3(ζ̃

d, d)i

ζ̃d
i
= η(∆d

1pi, ∆
d
2pi, min3(K, d)i)

∆d
1pi =

1

2
(pi+ed − pi−ed) | pi − pi−ed | pi+ed − pi

∆d
2pi = (∆d

1pi+ed +∆d
1pi−ed) | 2∆

d
1pi | 2∆

d
1pi

The functions min3 and η are given below:

min3(K, d)i = min(Ki+ed , Ki, Ki−ed) | min(Ki, Ki−ed) | min(Ki+ed , Ki);

η(δp1, δp2, p0) =

0 if |δp1|
p0

> d and |δp1|
|δp2|

> r1 ;

1−
|δp1|
|δp2|

−r0

r1−r0
if |δp1|

p0
> d and r1 ≥

|δp1|
|δp2|

> r0 ;

1 otherwise.

r0 = 0.75, r1 = 0.85, d = 0.33.

6

1.3 Artificial Viscosity

We add a small O(h2) diffusive term to the flux prior to the final conservative difference
step. This ”artificial viscosity” term serves to suppress instabilities occurring in multi-
dimensional shocks that are nearly aligned with one of the coordinate directions; for a
detailed discussion, see [4] and [8].

F
η+ 1

2

i+ 1

2
ed

= F
η+ 1

2

i+ 1

2
ed

−K
i+ 1

2
ed
(Un

i+ed
− U

η
i
)

K
i+ 1

2
ed

= K0 max(−(D~u)
i+ 1

2
ed
, 0)

(D~u)
i+ 1

2
ed

= (ud
i+ed

− ud
i
)+

∑

d′ 6=d

1

4
((∆d′

+u
d′)i + (∆d′

−u
d′)i + (∆d′

+u
d′)i+ed + (∆d′

−u
d′)i+ed)

For typical time-dependent calculations of shocks in gases, K0 = 0.1.

1.4 Extension to PPM

We can extend this algorithm to the case of using the piecewise-parabolic method of Colella
and Woodward [4] to perform the normal predictor step [6]. We begin by computing
spatially extrapolated face-centered values at the low and high edges of the cells.

W± =
1

2
(W n

i±e
+W n

i
)±

1

6
(∆d

2Wi −∆d
2Wi±e) | W

n
i
−

1

2
∆d

2Wi | W
n
i
+

1

2
∆d

2Wi

αk
± = lk · (W± −W n

i
)

The van Leer slopes ∆d
2W can be limited component-wise, or by using limiting in

characteristic variables. Similarly, there are two options for limiting the parabolic profile.
One is to apply the PPM limiter to the characteristic variables αk

±: if α
k
+α

k
− < 0, then

αk
+ := s ·min{s · αk

+,−2s · αk
−} if (αk

+)
2 > (αk

−)
2;

αk
− := s ·min{s · αk

−,−2s · αk
+} otherwise.

where s = sign(αk
+ − αk

−). If αk
+α

k
− ≥ 0, then we set αk

+, α
k
− := 0. An alternative

approach is to apply the limiter above component-wise to the differences W± − W n
i
,

and then compute the characteristic amplitudes αk
±. If appropriate, we also apply the

flattening coefficients (1.12) to the parabolic profiles after the limiting for monotonicity
has been applied: αk

± := αk
± · ζi.

Finally, we use the PPM predictor to compute the normal predictor corresponding to

7

(1.3).

Wi,±,d =W n
i
+
∑

k

(αk
± +

1

2
σk
±(±(αk

− − αk
+)− (αk

− + αk
+)(3− 2σk

±)) · r
k

σk
± =

{
±λk

d(W
n
i
)∆t
∆x

if ± λk
d(W

n
i
) > 0

max{±λ±(W n
i
), 0}∆t

∆x
otherwise.

Here λ{+,−} is the {maximum , minimum} of the wave speeds over all of the wave families.

1.5 Recursive AMR Update

We extend this method to an adaptive mesh hierarchy using the Berger–Oliger algorithm.
We define

{U l}lmax

l=0 , U
l : Ωl → R

m

U l = U l(tl). Here {tl} are a collection of discrete times that satisfy the temporal analogue
of proper nesting. {tl} = {tl−1+k∆tl : 0 ≤ k < nl

ref} The algorithm in [1] for advancing

the solution in time is given in pseudo-code in figure 1.1. The discrete fluxes ~F are
computed by using piecewise linear interpolation to define an extended solution on:

Ω̃ = G(Ωl, p) ∩ Γl , Ũ : Ω̃ → R
m

Ũi =

{
U l
i
(tl) for i ∈ Ωl

Ipwl((1− α)U l−1(tl−1) + α U l−1(tl−1 +∆tl−1))i otherwise

α =
tl − tl−1

∆tl−1

and then computing fluxes for the advance as outlined in Section 1.2.

8

procedure advance (l)

U l(tl +∆tl) = U l(tl)−∆tD ~F l on Ωl

if l < lmax

δF l+1
d = −F l

d on ζ l+1
+,d ∪ ζ l+1

−,d , d = 0, ...,D− 1

end if
if l > 0

δF l
d := δF l

d +
1

nl−1

ref

〈F l
d〉 on ζ l+,d ∪ ζ l−,d, d = 0, ...,D− 1

end if
for q = 0, ..., nl

ref − 1
advance(l + 1)

end for
U l(tl +∆tl) = Average(U l+1(tl +∆tl), nl

ref) on Cnl
ref

(Ωl+1)

U l(tl +∆tl) := U l(tl +∆tl)−∆tlDR(δF
l+1)

tl := tl +∆tl

nl
step := nl

step + 1

if (nl
step = 0 mod nregrid) and (nl−1

step 6= 0 mod nregrid)
regrid(l)

end if

Figure 1.1: Pseudo-code description of the Berger–Colella AMR algorithm for hyperbolic
conservation laws.

9

Chapter 2

Interface

2.1 Architecture Diagram

The AMRGodunov code makes extensive use of the AMR time-dependent infrastructure
contained in the Chombo libraries. A basic schematic of the class relationships between
Chombo and AMRGodunov classes is depicted in Figure 2.1. Where appropriate, the par-
ticular implementation for a polytropic gas will be referenced.

2.2 Data Design

The AMR unsplit hyperbolic (AMRGodunov) code makes extensive use of the Chombo
C++ libraries. The important data structures used in this application are all provided by
Chombo, as are many of the utilities that facilitate implementations of block-structured
adaptive algorithms. For more detailed descriptions of these classes, see the Chombo
documentation [3].

2.2.1 Global Data Structures

The important variables in the AMRGodunov code are in the conserved variable vector
~U . These variables are contained in container classes provided by Chombo.

2.2.1.1 Chombo Container Classes

A logically rectangular region in space is defined by a Box. Cell-centered data on an
individual Box is generally contained in an FArrayBox.

A set of disjoint Boxes (generally corresponding to all the grids at a single refinement
level) is defined by a DisjointBoxLayout. Data on a DisjointBoxLayout is generally
contained in a LevelData, which is a templated container class to facilitate computations
on disjoint unions of rectangles.

All of these classes are further documented in the Chombo documentation [3].

10

initialData()
postInitialize()
computeDt()
computeInitialDt()

initialGrid()

AMRLevel

AMRLevelPolytropicGas

LevelGodunov m_levelGodunov

 LevelData<FArrayBox> m_UOld, m_UNew

advance()

regrid()
postRegrid()

postTimeStep()
tagCells()

step()
getMaxWaveSpeed()

LevelGodunov

PiecewiseLinearFillpatch m_patcher
PatchGodunov m_patchGodunov

PatchGodunov
GodunovPhysics* m_gdnvPhysics

GodunovUtilities m_util

setCurrentBox()
updateState()

Figure 2.1: Software configuration diagram for the AMRGodunov code showing basic
relationships between AMRGodunov classes and Chombo classes for the polytropic gas
example.

2.2.1.2 Time-dependent AMR

The basic structure for the code is provided by the Chombo AMRTimeDependent library.
The AMR class manages the global recursive timestep, along with initialization of the
hierarchy of grids and other functionality involving data on more than one level of the
AMR grids.

The AMRLevel class manages data and functionality for a single AMR level, includ-
ing the single-level advance. The AMRLevelPolytropicGas class is derived from the
AMRLevel class and contains the functionality specific to the polytropic gas algorithm.

2.2.2 Internal Software Data Structures

For the polytropic gas example, the AMRLevel-derived class AMRLevelPolytropicGas

contains the primary data fields necessary to update the solution on one AMR level,
in particular the old- and new-time conserved variable fields (~U(tℓ) and ~U(tℓ + ∆tℓ)).
AMRLevelPolytropicGas also contains a LevelGodunov object as a member. The
LevelGodunov class contains the functionality necessary for updating the conserved
variables on a single level by one timestep. LevelGodunov contains as a member a
PatchGodunov object, which in turn contains a GodunovPhysics-derived object. The
GodunovPhysics-derived class contains the physics-dependent part of of the algorithm;
for the polytropic gas example, this is the PolytropicPhysics class.

11

2.3 Class Hierarchy

For many hyperbolic conservation law applications, it is necessary only to implement the
GodunovPhysics and PhysIBC interfaces for that application, leaving the remainder of
the code unchanged. The principal AMRGodunov classes follow.

• AMRLevel<name>, the AMRLevel-derived class that is driven by the AMR class. This
class is application/problem-dependent but is included here to document some of
the data members and functions that will probably be common to many applications.
This is where updates of U due to the source terms, S, need to be implemented.

• LevelGodunov, a class owned by AMRLevel<name>. LevelGodunov advances the
solution on a level and can exist outside the context of an AMR hierarchy. This
class makes possible Richardson extrapolation for error estimation (not currently
implemented).

• PatchGodunov, a class that encapsulates the operations required to advance a solu-
tion on a single patch/grid. PatchGodunov owns a pointer to a GodunovPhysics-
derived class. PatchGodunov also owns a GodunovUtilities object.

• GodunovUtilities, a class that handles operations common to many Godunov
applications, such as slope calculations, construction of PPM interpolants, limiters,
artificial viscosity coefficients, and flattening. These operations are independent of
the details of the physical system to which the method is being applied, although not
all of them are generally applicable: for example, artificial viscosity can be computed
only for those systems in which the primitive variables include a vector velocity, i.e.,
continuum-mechanical systems.

• GodunovPhysics is a base class that provides an interface to the physics-dependent
parts of the Godunov application. For many hyperbolic conservation law applica-
tions, it is necessary only to implement the GodunovPhysics and PhysIBC inter-
faces for that application, leaving the remainder of the code unchanged.

• PhysIBC, is a base class that encapsulates initial conditions and flux-based boundary
conditions.

2.3.1 Class AMRLevel<name>

AMRLevel<name> is the AMRLevel-derived class with which the AMR class will directly
interact. Its user interface is therefore constrained by the AMRLevel interface. It is
also an application/problem-dependent portion of the code, but there are important data
members and functions that will probably be part of any implementation. These are
documented here. The important data members of an AMRLevel<name> class are as
follows:

12

• LevelData<FArrayBox> m_UOld, m_UNew;

The conserved variables at old and new times. Both need to be kept because
subcycling in time requires temporal interpolation.

• Real m_cfl, m_dx;

CFL number and grid spacing for this level.

• FineInterp m_fineInterp;

Interpolation operator for use during regridding, which fills newly-refined regions
that were previously only covered by coarser data.

• CoarseAverage m_coarse_average;

Averaging operator, which replaces data on coarser levels with the average of the
data on this level where they coincide in space.

The AMRLevel<name> implementation of AMRLevel currently does the following for
each of the important interface functions:

• Real advance()

This function advances the conserved variables by one time step. It calls the
LevelGodunov::step function to advance the hyperbolic portion of (1.1). If there
are source terms, this is where the user can incorporate them in the advance of the
conserved variables. The time step returned by this function is stored in member
data m_dtNew.

• void postTimeStep()

This function calls refluxing along the coarse-fine interface with the next finer level,
and replaces the solution with an average of finer-level data in regions covered by
the next finer level.

• void regrid(const Vector<Box>& a_newGrids)

This function changes the union of rectangles over which the data is defined. Where
the old and new sets of rectangles intersect, solution data is copied from the existing
data on this level. In places where there was only data from the next coarser level,
piecewise linear interpolation is used to fill in the data.

• void initialData()

In this function, the initial state is filled by calling the initial condition member data
of m_patchGodunov, namely getPhysIBC()->initialize().

• void computeDt()

This function returns the time step stored during the advance() call, m_dtNew.

13

• void computeInitialDt()

This function calculates the time step using the maximum wavespeed returned by a
LevelGodunov::getMaxWaveSpeed call. Given the maximum wavespeed, w, the
initial time step multiplier, K, and the grid spacing at this level, h, then the initial
time step, ∆t, is given by:

∆t = K
h

w
. (2.1)

• DisjointBoxLayout loadBalance(const Vector<Box>& a_grids)

Calls the Chombo load balancer to create a load-balanced layout on the given boxes.
This is returned.

2.3.2 Class LevelGodunov

LevelGodunov is a class owned by AMRLevel<name>. LevelGodunov advances the so-
lution on a level and can exist outside the context of an AMR hierarchy. This class makes
possible Richardson extrapolation for error estimation. The important functions of the
public interface of LevelGodunov are:

• void define(const DisjointBoxLayout& a_thisDisjointBoxLayout,

const DisjointBoxLayout& a_coarserDisjointBoxLayout,

const ProblemDomain& a_domain,

const int& a_refineCoarse,

const Real& a_dx,

const GodunovPhysics* const a_godunovFactory,

const int& a_normalPredOrder,

const bool& a_useFourthOrderSlopes,

const bool& a_usePrimLimiting,

const bool& a_useCharLimiting,

const bool& a_useFlattening,

const bool& a_useArtificialViscosity,

const Real& a_artificialViscosity,

const bool& a_hasCoarser,

const bool& a_hasFiner);

Define the internal data structures. On the coarsest level, an empty DisjointBoxLay-
out is passed in for coarserDisjointBoxLayout.

– a_thisDisjointBoxLayout, a_coarserDisjointBoxLayout: The layouts
at this level and the next coarser level. For the coarsest level, an empty
DisjointBoxLayout is passed in for coarserDisjointBoxLayout.

– a_domain: The problem domain on this level.
– a_refineCoarse: The refinement ratio between this level and the next coarser

level.
– a_dx: The grid spacing on this level.

14

– a_godunovFactory: The factory for the problem specific physics and analysis
of the PDE being solved, e.g., characteristic analysis. The GodunovPhysics

class is described below. Note: this object is its own factory.
– a_normalPredOrder: The order of the normal predictor used during numerical

integration. This must have a value of 1 (PLM) or 2 (PPM).
– a_useFourthOrderSlopes: If true, use a 4th-order slope computation. Oth-

erwise use a 2nd-order slope computation.
– a_usePrimLimiting: If true, do slope limiting on the primitive variables.

Note: Currently, simultaneous slope limiting of the primitive and characteristic
variables is not supported.

– a_useCharLimiting: If true, do slope limiting on the characteristic variables.
Note: Currently, simultaneous slope limiting of the primitive and characteristic
variables is not supported.

– a_useFlattening: If true, do slope flattening. Note: This requires the en-
abling of 4th-order slope computations and some form of slope limiting.

– a_useArtificialViscosity: If true, apply artificial viscosity.
– a_artificialViscosity: The artificial viscosity coefficient used in applying

artificial viscosity.
– a_hasCoarser, a_hasFiner: This level has a coarser (or finer) level. These

are used when coarser or finer levels are needed or when data that exists
between levels (e.g., flux registers) is needed.

• Real step(LevelData<FArrayBox>& a_U,

LevelData<FArrayBox>& a_flux[CH_SPACEDIM],

LevelFluxRegister& a_finerFluxRegister,

LevelFluxRegister& a_coarserFluxRegister,

const LevelData<FArrayBox>& a_S,

const LevelData<FArrayBox>& a_UCoarseOld,

const Real& a_TCoarseOld,

const LevelData<FArrayBox>& a_UCoarseNew,

const Real& a_TCoarseNew,

const Real& a_time,

const Real& a_dt);

Advance the solution at this timeStep for one time step.

– a_U: The current solution at this level, which will be advanced by a_dt to
a_time.

– a_flux: A SpaceDim array of face-centered LevelData<FArrayBox>s, which
may be used to pass face-centered data (such as fluxes) back and forth from
the function.

– a_finerFluxRegister, a_coarserFluxRegister: The flux registers be-
tween this level and the next coarser (or finer) levels.

15

– a_S: Source terms from the right-hand side of the quasilinear form of system
of PDEs being solved (integrated) - S ′ in equation (1.2). If there are no source
terms, a_S should be null constructed and not defined (i.e., a_S’s define()
function should not called).

– a_UCoarseOld, a_TCoarseOld: The solution at the next coarser level at the
old time, a_TCoarseOld.

– a_UCoarseNew, a_TCoarseNew: The solution at the next coarser level at the
new time, a_TCoarseNew.

– a_time: The time to which to advance the current solution. This should be
between a_TCoarseOld and a_TCoarseNew.

– a_dt: The time step at this level.

• Real getMaxWaveSpeed(const LevelData<FArrayBox>& a_U);

Return the maximum wave speed of the input a_U (the conserved variables) for
purposes of limiting the time step.

• GodunovPhysics* getGodunovPhysicsPtr();

Return a pointer to the GodunovPhysics object used by the PatchGodunov mem-
ber of this LevelGodunov.

2.3.3 Class PatchGodunov

The base class PatchGodunov provides an interface to LevelGodunov for managing
the update of a single patch using the unsplit second-order Godunov method described
above. It provides a top-level implementation of the algorithm by calling member functions
in the GodunovUtilities class (which contains physics-independent components that
make up the algorithm) and by calling member functions of the object pointed to by
a_gdnvPhysicsPtr (which contains physics-dependent functions).

There are four types of grid variables that appear in the unsplit Godunov method in
section 1.2: conserved variables, primitive variables, fluxes, and source terms, denoted
by U, W, F, and S, respectively. It is often convenient to have the number of primitive
variables and fluxes exceed the number of conserved variables. Redundant primitive vari-
able quantities are often carried that parameterize the equation of state in order to avoid
multiple calls to the equation-of-state function. Also, it is often convenient to split the
fluxes for some variables into multiple components, e.g., dividing the momentum flux
into advective and pressure terms. The API given here provides the flexibility to support
various possibilities.

The following virtual functions are part of the public interface. Some have default imple-
mentations that the user will not need to change for a variety of physical problems.

• virtual void define(ProblemDomain& a_domain,

const Real& a_dx,

16

const GodunovPhysics* const a_gdnvPhysicsPtr,

const int& a_normalPredOrder,

const bool& a_useFourthOrderSlopes,

const bool& a_usePrimLimiting,

const bool& a_useCharLimiting,

const bool& a_useFlattenping,

const bool& a_useArtificialViscosity,

const Real& a_artificialViscosity);

Set the domain and grid spacing.

– a_domain: The problem domain index space.
– a_dx: The grid spacing for this patch/grid.
– a_gdnvPhysicsPtr: A pointer to the object that supplies all the physics

associated with the problem being solved.
– a_normalPredOrder: The order of the normal predictor used during numerical

integration. This must have a value of 1 (PLM) or 2 (PPM).
– a_useFourthOrderSlopes: If true, use a 4th-order slope computation. Oth-

erwise use a 2nd-order slope computation.
– a_usePrimLimiting: If true, do slope limiting on the primitive variables.

Note: Currently, simultaneous slope limiting of the primitive and characteristic
variables is not supported.

– a_useCharLimiting: If true, do slope limiting on the characteristic variables.
Note: Currently, simultaneous slope limiting of the primitive and characteristic
variables is not supported.

– a_useFlattening: If true, do slope flattening. Note: This requires the en-
abling of 4th-order slope computations and some form of slope limiting.

– a_useArtificialViscosity: If true, apply artificial viscosity.
– a_artificialViscosity: The artificial viscosity coefficient used in applying

artificial viscosity.

• virtual void setCurrentTime(const Time& a_time);

Set the current physical time of the problem.

– a_time: The current physical time of the problem.

• virtual void setCurrentBox(const Box& a_currentBox);

Set the box over which the conserved variables will be updated for this patch/grid.

– a_box: The box over which the conserved variables will be updated.

• virtual void updateState(FArrayBox& a_U,

FArrayBox a_F[SPACEDIM],

Real& a_maxWaveSpeed,

const FArrayBox& a_S,

17

const Real& a_dt,

const Box& a_box);

Update the conserved variables, return the fluxes used for this, and the maximum
wave speed in the updated solution.

– a_U: The conserved variables to be updated.
– a_F[]: The fluxes on each of the faces used to update the conserved variables

(used for refluxing).
– a_maxWaveSpeed: The maximum wave speed for this patch/grid.
– a_S: Source terms from the right-hand side of the quasilinear form of system

of PDEs being solved (integrated): S ′ in equation (1.2). If there are no source
terms, a_S should be null constructed and not defined (i.e., a_S’s define()
function should not called).

– a_dt: The time step for this patch/grid.
– a_box: The box to be used for the computation/update.

• GodunovPhysics* getGodunovPhysicsPtr();

Return a pointer to the GodunovPhysics object used by this object.

2.3.4 Class GodunovPhysics

GodunovPhysics is an interface class owned and used by PatchGodunov, through which
a user specifies the physics of the problem. Most methods of the GodunovPhysics class
are pure virtual. The user is expected to create a subclass of GodunovPhysics specific
to the problem they are solving, and in that subclass implement all of these methods.

IMPORTANT NOTE: It is assumed that the characteristic analysis puts the smallest
eigenvalue first and the largest eigenvalue last, and orders the characteristic variables
accordingly.

• virtual void setPhysIBC(PhysIBC* a_bc);

Set the initial and boundary condition pointer used by the integrator for the current
level. This must be called for the class to be fully defined and usable.

– a_bc: The initial and boundary condition object for the current level.

• virtual Real getMaxWaveSpeed(const FArrayBox& a_U,

const Box& a_box) = 0;

Compute the maximum wave speed of the state over the region.

– a_U: The conserved state.
– a_box: The region over which to calculate the max wave speed.

• virtual GodunovPhysics* new_godunovPhysics() const = 0;

Factory method. Reproduce oneself and return a pointer to the new object.

18

• virtual int numConserved() = 0;

Return the number of conserved variables being updated. This may be less than
the total number of conserved variables.

• virtual Vector<string> stateNames() = 0;

Return the names of all the conserved variables.

• virtual int numFluxes() = 0;

Return the number of flux variables. This can be greater than the number of
conserved variables if additional fluxes/face-centered quantities are computed.

• virtual int numPrimitives() = 0;

Return the total number of primitive variables. This may be greater than the
number of conserved variables if derived/redundant quantities are also stored for
convenience.

• virtual void charAnalysis(FArrayBox& a_dW,

const FArrayBox& a_W,

const int& a_dir,

const Box& a_box) = 0;

Transform a_dW from primitive to characteristic variables.

IMPORTANT NOTE: It is assumed that the characteristic analysis puts the
smallest eigenvalue first and the largest eigenvalue last, and orders the characteristic
variables accordingly.

– a_dW: On input, contains the increments of the primitive variables. On output,
contains the increments in the characteristic variables.

– a_W: The state in primitive variables.
– a_dir: Spatial direction.
– a_box: The box over which the calculation is carried out.

• virtual void charSynthesis(FArrayBox& a_dW,

const FArrayBox& a_W,

const int& a_dir,

const Box& a_box) = 0;

Transform a_dW from characteristic to primitive variables.

IMPORTANT NOTE: It is assumed that the characteristic analysis puts the
smallest eigenvalue first and the largest eigenvalue last, and orders the characteristic
variables accordingly.

– a_dW: On input, contains the increments of the characteristic variables. On
output, contains the increments in the primitive variables.

– a_W: The state in primitive variables.

19

– a_dir: Spatial direction.
– a_box: The box over which the calculation is carried out.

• virtual void charValues(FArrayBox& a_lambda,

const FArrayBox& a_W,

const int& a_dir,

const Box& a_box) = 0;

Compute the characteristic values (eigenvalues).

IMPORTANT NOTE: It is assumed that the characteristic analysis puts the
smallest eigenvalue first and the largest eigenvalue last, and orders the characteristic
variables accordingly.

– a_lambda: Eigenvalues of a_W.
– a_W: The state in primitive variables.
– a_dir: Spatial direction.
– a_box: The box over which the calculation is carried out.

• virtual void computeUpdate(FArrayBox& a_dU,

FluxBox& a_F,

const FArrayBox& a_U,

const FluxBox& a_WHalf,

const bool& a_useArtificialViscosity,

const Real& a_artificialViscosity,

const Real& a_currentTime,

const Real& a_dx,

const Real& a_dt,

const Box& a_box);

Compute the increment in the conserved variables from face variables. Compute dU
= dt*dU/dt, the change in the conserved variables over the time step. The fluxes
returned are suitable for use in refluxing. This has a default implementation but
can be redefined as needed.

– a_dU: The update to the conserved variables.
– a_F: The fluxes associate with a_dU.
– a_U: The initial conserved variable values.
– a_WHalf: The extrapolated state in primitive variables at faces.
– a_useArtificialViscosity: If true, apply artificial viscosity.
– a_artificialViscosity: The artificial viscosity coefficient used in applying

artificial viscosity.
– a_currentTime: The current simulation time.
– a_dx: The grid spacing for this patch/grid.
– a_dt: The time step for this patch/grid.
– a_box: The box over which the calculation is carried out.

20

• virtual void getFlux(FArrayBox& a_flux,

const FArrayBox& a_WHalf,

const int& a_dir,

const Box& a_box);

Compute the fluxes from primitive variables on a face. This has a default implemen-
tation which throws an error. The method is here so that the default implementation
of computeUpdate can use it and the user can supply it. It has an implementation,
so if the user redefines computeUpdate, they aren’t force to implement getFlux,
which is used only by the default implementation of computeUpdate.

– a_flux: The output fluxes.
– a_WHalf: The extrapolated state in primitive variables at faces.
– a_dir: Spatial direction.
– a_box: The box over which the calculation is carried out.

• virtual void incrementSource(FArrayBox& a_S,

const FArrayBox& a_W,

const Box& a_box) = 0;

Add to (increment) the source terms given the current state.

– a_S: On input, a_S contains the current source terms from the right-hand
side of the quasilinear form of system of PDEs being solved (integrated): S ′

in equation (1.2). On output, a_S has had any additional source terms (based
on the current state, a_W) added to it.

– a_W: The state in primitive variables.
– a_box: The box over which the calculation is carried out.

• virtual void riemann(FArrayBox& a_WStar,

const FArrayBox& a_WLeft,

const FArrayBox& a_WRight,

const FArrayBox& a_W,

const Real& a_time,

const int& a_dir,

const Box& a_box) = 0;

Compute the solution to the Riemann problem on each a_dir face in a_box.

– a_WStar: Riemann problem solution.
– a_WLeft: Solution on the left side of the discontinuity.
– a_WRight: Solution on the right side of the discontinuity.
– a_W: The state in primitive variables.
– a_time: The solution time.
– a_dir: Spatial direction.
– a_box: The box over which the calculation is carried out.

21

• virtual void postNormalPred(FArrayBox& a_dWMinus,

FArrayBox& a_dWPlus,

const FArrayBox& a_W,

const Real& a_dt,

const Real& a_dx,

const int& a_dir,

const Box& a_box) = 0;

Perform post-processing of values for normal predictor. This is done, for example,
to add any spatial derivatives that are not accounted for in the characteristic anal-
ysis, such as the Stone correction in MHD. Also, bounding the ranges of primitive
variables must be done here.

– a_dWMinus: Extrapolated solution on the low side of the cell.
– a_dWPlus: Extrapolated solution on the high side of the cell.
– a_W: Cell-centered solution value at the beginning of the time step.
– a_dt: The time step for this patch/grid.
– a_dx: The grid spacing for this patch/grid.
– a_dir: Spatial direction.
– a_box: The box over which the calculation is carried out.

• virtual void quasilinearUpdate(FArrayBox& a_AdWdx,

const FArrayBox& a_wHalf,

const FArrayBox& a_W,

const Real& a_scale,

const int& a_dir,

const Box& a_box) = 0;

Compute the partial update based on upwind differencing to the primitive variables
using derivatives in the a_dir direction, for example in equations (1.6), (1.8), and
(1.9).

– a_AdWdx: On output, the upwind difference estimate of τAd
∂W
∂xd

.
– a_wHalf: Solution to the Riemann problem at adjacent cell faces in the d

direction.
– a_W: Cell-centered primitive values that are being corrected.
– a_scale: Scale factor τ .
– a_dir: Spatial direction.
– a_box: The cell-centered box over which the calculation is carried out.

• virtual void consToPrim(FArrayBox& a_W,

const FArrayBox& a_U,

const Box& a_box) = 0;

Compute primitive variables from conserved variables.

– a_W: On output, the primitive variables.

22

– a_U: The conserved variables.
– a_box: The region over which the calculation is carried out.

• virtual Interval velocityInterval() = 0;

Return the interval of component indices of the velocities within the primitive vari-
ables. Used for slope flattening (slope computation) and computing the divergence
of the velocity (artificial viscosity).

• virtual int pressureIndex() = 0;

Return the component index of the pressure within the primitive variables. Used for
slope flattening (slope computation).

• virtual Real smallPressure() = 0;

Return a value that is used by slope flattening to limit (away from zero) the absolute
value of a slope in the pressureIndex() component (slope computation).

• virtual int bulkModulusIndex() = 0;

Return the component index within the primitive variables for the bulk modulus.
Used for slope flattening (slope computation) used as a normalization to measure
shock strength.

2.3.5 Class PhysIBC

PhysIBC is an interface class owned and used by PatchGodunov, and through which a
user specifies the initial and boundary of conditions of the particular problem. These
boundary conditions are flux-based. PhysIBC contains as member data the grid spacing
(Real m_dx) and the domain of computation (ProblemDomain m_domain). This object
serves as its own factory. The important user functions of PhysIBC are as follows.

• virtual void define(const ProblemDomain& a_domain

const Real& a_dx);

Define the internals of the class.

– a_domain: The problem domain.
– a_dx: The grid spacing for this patch/grid.

• virtual PhysIBC* new_physIBC() = 0;

This is a factory method. It allocates and returns the pointer to a new PhysIBC

object.

• virtual void initialize(LevelData<FArrayBox>& a_U) = 0;

Fill the input with the initial conserved variable state of the problem.

23

– a_U: The conserved variables.

• virtual void primBC(FArrayBox& a_WGdnv,

const FArrayBox& a_Wextrap,

const FArrayBox& a_W,

const int& a_dir,

const Side::LoHiSide& a_side,

const Real& a_time) = 0;

Return the flux boundary condition on the boundary of the domain.

– a_WGdnv: The primitive variables over the face-centered box. The values in
the array located along the boundary faces of the domain are replaced with
boundary values.

– a_Wextrap: The extrapolated values of the primitive variables to the a_side
of the cells in direction a_dir. This data is cell-centered.

– a_W: The primitive variables at the start of the time step. This data is cell-
centered.

– a_dir, a_side: The normal direction and the side of the domain where the
boundary condition fluxes are needed.

– a_time: The physical time of the problem — for time-varying boundary con-
ditions.

• virtual void setBdrySlopes(FArrayBox& a_dW,

const FArrayBox& a_W,

const int& a_dir,

const Real& a_time) = 0;

The boundary slopes are already set to one-sided difference approximations on en-
try. If this function doesn’t change them, they will be used for the slopes at the
boundaries.

– a_dW: The slopes over the box.
– a_W: The primitive variables at the start of the time step.
– a_dir: The normal direction.
– a_time: The physical time of the problem — for time-varying boundary con-

ditions.

• virtual void artViscBC(FArrayBox& a_F,

const FArrayBox& a_U,

const FArrayBox& a_divVel,

const int& a_dir,

const Real& a_time) = 0;

Apply artificial viscosity to the fluxes of the conserved variables at the boundaries.

24

– a_F: The fluxes over the box. The values in the array along the boundary faces
of the domain are updated by applying the artificial viscosity at the boundaries.

– a_U: The conserved variables.
– a_divVel: The face-centered divergence of the cell-centered velocity.
– a_dir: The normal direction.
– a_time: The physical time of the problem — for time-varying boundary con-

ditions.

25

Bibliography

[1] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys., 82(1):64–84, May 1989.

[2] P. Colella and H. M. Glaz. Efficient solution algorithms for the Riemann problem for
real gases. J. Comput. Phys., 59:264, 1985.

[3] P. Colella, D. T. Graves, N.D. Keen, T. J. Ligocki, D. F. Martin, P.W. McCorquodale,
D. Modiano, P.O. Schwartz, T.D. Sternberg, and B. Van Straalen. Chombo Software
Package for AMR Applications - Design Document. unpublished, 2000.

[4] P. Colella and P. R. Woodward. The piecewise parabolic method (PPM) for gas-
dynamical simulations. J. Comput. Phys., 54:174–201, 1984.

[5] Phillip Colella. Multidimensional upwind methods for hyperbolic conservation laws. J.
Comput. Phys., 87:171–200, 1990.

[6] H. Miller G and P. Colella. A conservative three-dimensional Eulerian method for
coupled solid-fluid shock capturing. J. Comput. Phys., 183:26–82, 2002.

[7] Jeff Saltzman. An unsplit 3d upwind method for hyperbolic conservation laws. J.

Comput. Phys., 115:153–168, 1994.

[8] P. R. Woodward and P. Colella. The numerical simulation of two-dimensional fluid
flow with strong shocks. J. Comput. Phys., 54:115–173, 1984.

26

